Reading Time: 4 minutes |

September 20, 2022


AI / IOT / Oil & Gas


Oil & Gas – Predictive Analytics for critical assets

More important than ever before…

The pressure to operate at the highest levels of efficiency while increasing productivity & lowering costs has never been higher. For professionals operating in remote environments, this has become challenging to achieve. Real-time visibility to plant operations & process equipment in order to avoid costly unscheduled maintenance and reduce downtime is now the need of the hour across the industry.

Over the last decade, the significant increase of IIoT enabled sensors (generating vast amounts of data) & the use of machine learning-based predictive analytics has enabled companies to cut operational expenditure by optimizing maintenance schedules, predicting critical asset replacement & driving up productivity. (We are also hosting a webinar on the same topic on 29th April, 2020. More details at the bottom of the article)

Business case for critical assets

There are several hundred thousand critical assets (pumps, motors, compressors, turbines, etc.) deployed across the industry. Over 50% of them are not instrumented due to a fair majority being legacy equipment. The current manual reading based predictive maintenance techniques are tedious & are not able to keep up with the ground reality of the health of assets across the field/plant. For assets in remote or hazardous locations, the frequency of inspection is even lower.

The cost of a single asset’s failure ranges from a few $100,000 to a few $100million due to production downtime, repair and in the worst-case – accidents due to catastrophic failure. All of this can now be avoided with easy to integrate, reliable & affordable sensors that can wirelessly transmit data to the edge/cloud for machine learning processing, in turn providing plant personal with real time usable information like asset health indices, etc.

Predictive analytics for critical assets – Technology & solution providers

Our analysis at WhatNext tells us that while there are quite a number of sector agnostic solution providers, the number of predictive analytics technology providers catering to the oil & gas industry & specifically for critical assets is very low. There is immense potential for many other incumbents to enter this space given the vastness of assets to the sensorised and digitalised.

Existing solution providers include some of the large established players like, OneStim from Schlumberger, GE’s Predix and Prism by Schneider & Aveva.

Other companies that have entered this space over the last eight years & made a mark in the industry for the solutions they’ve implemented include Spark Cognition, Flutura, Presenso (now acquired by ZF) & Petasense. Oil field service giants like Halliburton, Aker Solutions, Weatherford, and National Oilwell Varco also offer predictive maintenance technologies to monitor the equipment health and predict the failure in advance.

Implementation of predictive analytics for critical assets across the industry

  • In Nov’2019, ADNOC partnered with Honeywell to use Honeywell’s AI-powered asset monitoring and analytics platform to maximize asset efficiency and integrity across ADNOC’s upstream & downstream operations.
  • ExxonMobil partnered with Microsoft in Feb’19, to use its Microsoft Azure cloud computing platform & data analytics tools to deploy predictive maintenance technologies at Permian shale assets in west Texas and south-east New Mexico.
  • Shell has been using AI and machine learning in predictive maintenance to predict asset failures & reduced efficiencies for the past several years.
  • In April 2018, Total partnered with Google Cloud to develop AI-driven software for geophysical data analysis, besides delivering equipment monitoring capabilities.
  • In September 2018, Chevron adopted the cloud-based data analytics approach for predictive equipment failure in its refinery operations. Working with Microsoft, the company aims to install sensors on thousands of pieces of equipment by 2024, enabling them to predict exactly when equipment will need to be serviced.
  • In March 2018, Equinor established an integrated operations support center in Bergen, Norway, to perform remote monitoring and diagnostics of its oil and gas assets in the continental shelf.
  • Repsol uses AI-based analytics and machine learning to enhance equipment health and improve productivity.
  • ConocoPhillips also deployed AI-based predictive analytics technologies to optimize maintenance operations.

We have a detailed article on the topic, which we are giving for free to people who register for our next webinar, wherein we will be covering how predictive analytics help define asset-specific health indices, real-time monitoring & triggering of early warning alerts based a variety of analytical models.

Our technology ecosystem partners Petasense & Flutura will share their insights, experiences, guidelines & real world implementation cases that answer:

  1. Why is it crucial to digitize existing legacy non-digital critical assets?
  2. How to identify future asset health issues using software modeling of equipment & asset specific health indices?
  3. How to ensure equipment reliability & optimal performance using pattern recognition for early warning alerts?
  4. How to avoid asset failure based accidents & safety hazards using predictive models?

Click here to register and access your free comprehensive article (Pdf will be emailed to you within 24 hrs)

About WhatNext Global (

WhatNext is a platform focused on 12 disruptive and exponential digital technologies. It is designed to help clients be in tune with, scout out, adopt the most impactful and exponential technologies globally. Our oil & gas clients use the platform to accelerate innovation cycles, solve R&D challenges, develop new business models and mitigate risks of disruption.

How useful was this post?

Click on a star to rate it!

Average rating 0 / 5. Vote count: 0

No votes so far! Be the first to rate this post.

Leave a Comment

Your email address will not be published. Required fields are marked *

Related Insights

Food Supply Chain - WhatNext

Food Supply Chain and Internet of Things

Driver Monitoring using AI -WhatNext

Driver Monitoring using Artificial Intelligence

Quantum Computing - WhatNext

Quantum Computing in Car Manufacturing

Sustainable Agriculture - WhatNext

Sustainable Agriculture using Synthetic Biology

Potential of Living Medicines - WhatNext

Potential of Living Medicines